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Microstructural geometry plays a critical role in the response of heterogeneous materials. Con-
sequently, methods for generating microstructural samples are increasingly crucial to advanced
numerical analyses. We extend Sonon et al.’s unified framework, developed originally for gener-
ating particulate and foam-like microstructural geometries of Periodic Unit Cells, to non-periodic
microstructural representations based on the formalism of Wang tiles. This formalism has been
recently proposed in order to generalize the Periodic Unit Cell approach, enabling a fast synthesis
of arbitrarily large, stochastic microstructural samples from a handful of domains with predefined
microstructural compatibility constraints. However, a robust procedure capable of designing complex,
three-dimensional, foam-like and cellular morphologies of Wang tiles has not yet been proposed. This
contribution fills the gap by significantly broadening the applicability of the tiling concept.

Since the original Sonon et al.’s framework builds on a random sequential addition of particles
enhanced with an implicit representation of particle boundaries by the level-set field, we first devise
an analysis based on a connectivity graph of a tile set, resolving the question where a particle should
be copied when it intersects a tile boundary. Next, we introduce several modifications to the original
algorithm that are necessary to ensure microstructural compatibility in the generalized periodicity
setting of Wang tiles. Having established a universal procedure for generating tile morphologies we
compare strictly aperiodic and stochastic sets with the same cardinality in terms of reducing the
artificial periodicity in reconstructed microstructural samples. We demonstrate the superiority of the
vertex-defined tile sets for two-dimensional problems and illustrate the capabilities of the algorithm
with two- and three-dimensional examples.
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1. Introduction

The geometrical details of a material composition drive many
macroscopic phenomena such as crack initiation and propaga-
tion [1] or meta-behaviour [2]. Advanced computational strate-
gies thus tend to incorporate knowledge of material microstruc-
tures! in order to enhance their predictive power. [3]

When micro and macro scales are well separated, a microstruc-
tural response is typically up-scaled through homogenization
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methods. Albeit computationally intensive, numerical homoge-
nization methods [3] now supersede analytical methods [4] be-
cause of their ability to handle complex microstructural geome-
tries and non-linear problems. With increasing computational
power, numerical models that fully resolve the microstructural
geometry in the whole macroscopic domain, e.g. [5,6], or in

1 We use the term “microstructure” in a broader sense, without referring to
a specific scale length.
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regions of interest [7,8], have emerged, addressing problems
without clear scale separation.

For both strategies, however, accuracy critically depends on
the representativeness of the provided microstructural geom-
etry, accenting the crucial role of microstructure modelling in
multi-scale approaches.

Compared to materials with regular microstructures, charac-
terized entirely by Periodic Unit Cells (PUCs), modelling random
heterogeneous materials is more intricate; any finite-size repre-
sentation automatically implies information loss. The optimal mi-
crostructure representation should capture intrinsic randomness
and fluctuations in a microstructure while remaining computa-
tionally tractable (for numerical homogenization) or inexpensive
to construct (for fully resolved simulations).

1.1. State-of-the-art in modelling random microstructures

One of the widely adopted approaches for modelling hetero-
geneous materials rests on an extension of PUC generated such
that its spatial statistics match that of a reference microstructure.
This procedure appears in the literature under various names
such as Statistically Optimal Representative Unit Cell [9], Re-
peating Unit Cell [10], Statistically Similar Representative Vol-
ume Element [11], or Statistically Equivalent Periodic Unit Cell
(SEPUC) [12], among others. The spatial statistics involved range
from Minkowski functionals [13] to multi-point probability func-
tions [4], out of which the two-point probability [14-16], two-
point cluster [17], and lineal path [12,18-20] functions are the
most frequently used.

Following Povirk’s seminal work [21], the majority of cell rep-
resentations are generated using optimization procedures, min-
imizing the discrepancy between the statistical characterization
of the reference microstructure and its compressed, PUC-like
representation. The particular choice of optimization algorithm
currently varies with several options including simulated an-
nealing [12,19,22], genetic [9,10,23,24] and gradient [21,25], or
phase-recovery [26] algorithms.

The second approach to microstructure generation utilizes ref-
erence samples of the microstructure. New realizations are then
obtained with a Markovian process, taking individual voxels [27]
or a patch of voxels [28] from the provided reference samples
according to the proximity of the spatial statistics computed for
their surroundings. Alternatively, searching for statistics proxim-
ity can be replaced with a classification tree-based supervised
learning model [29].

The previous two approaches suffer from high computational
costs related either to optimization or to training the learning
models. The applicability of their outputs is also sensitive to
the spatial statistics considered, attesting to the ill-conditioning
of the microstructure reconstruction problem itself. Achieving a
good match in selected statistics does not automatically guar-
antee similar overall behaviour; for instance, Biswal et al. [30]
demonstrated that realizations with similar two-point probability
functions could have significantly different percolation character-
istics that govern overall transport properties.

Complementary to the statistics-informed methods, a third ap-
proach to generating microstructural realizations relies on
meta-modelling the genesis of a microstructure. These methods
range in complexity and include the Monte-Carlo Potts [31]
and phase field models [32] of grain growth; sedimentation-
and-compaction models [30]; and various particle packing al-
gorithms, e.g. [33,34, and references therein], based on either
Random Sequential Adsorption (RSA)? [36,37] or molecular dyna-
mics [38-40].

2 1n its simplest setting of packing circular or spherical particles, RSA
corresponds to the Dart Throwing Algorithm [35].

The relevance of packing algorithms extends beyond simple
particle-matrix microstructures because the resulting packings
often serve as initial seeds for tessellation-based models appli-
cable to polycrystals [41,42], foams [34], and cell tissues [43,44].
Due to its straightforward implementation, Voronoi tessellation
is the most common choice; however, the resulting geome-
try is oversimplified for many materials. For instance, Voronoi-
based models overestimate overall stiffness for high porosity
foams [45]. The curvature of cell walls [41,46] and heterogeneity
in cell size [34,42] and wall thickness [42] must be additionally
introduced to obtain realistic geometries. Similar effects can be
achieved by modifying the distance measure used during tes-
sellation, e.g. models based on the Laguerre variant generate
microstructures with multi-mode cell size distribution [33,34,
42,47]. Inspired by Laguerre tessellation, Chakraborty et al. [44]
proposed Adaptive Quadratic Voronoi Tessellation, attributing a
distinct anisotropic metric to each seed and thus allowing for
additional control over the resulting geometry.

The original RSA method [35] suffers from © (N?) complexity
for N particles due to overlap checks and is impractical for
generating large, densely packed systems. Consequently, sev-
eral accelerations have been proposed. For Dart Throwing Al-
gorithm [35], which is a simplified case of RSA with equisized
circular/spherical particles, Dunbar and Humphreys [48] intro-
duced a scalloped sector representation of non-overlap guar-
anteed regions. In the same year, Jones [49] proposed an al-
ternative bookkeeping of the regions based on an adaptively
updated Voronoi tessellation. Moreover, both approaches utilize
a tree data structure and improve the algorithm complexity to
O(N log N). For general RSA, Yang et al. [10] proposed an accel-
eration based on a combination of a spline description of particle
shapes and hierarchically refined bounding boxes of each particle.
Recently, Sonon et al. [50] introduced a method building on an
implicit, level-set based description of particle shapes, achieving
O(N) complexity (see Section 3.3 in [50]). Moreover, Sonon et al.’s
method readily facilitates generating complex microstructures
using linear combinations of the nearest neighbour distance func-
tions and dedicated morphing operations [50-53]. In a sense, this
approach introduces the anisotropic pseudo-metrics® of [44] in
a geometrically-motivated way by considering arbitrarily-shaped
particles. As a result, Sonon et al.’s method enables refined con-
trol over generated microstructure unattainable with standard
Voronoi or Laguerre tessellations; see Section 3.2.

Albeit significantly faster than RSA or optimization-based
approaches, the latter method still starts anew every time an
additional realization is required, imposing overhead on, e.g., in-
vestigations of the Representative Volume Element (RVE) size
that require multiple microstructural samples to be generated,
see [54-56]. Alternatively, larger microstructural realizations can
be assembled from (SE)PUC; however, such construction intro-
duces non-physical, long-range, periodic artefacts in a microstruc-
tural geometry and its local response.

1.2. Wang tiling in microstructure modelling

Inspired by applications in computer graphics [57], we have
introduced the formalism of Wang tiles as a suitable general-
ization of SEPUC representation of heterogeneous materials [58].
The formalism provides a compromise between the SEPUC ap-
proach and the use of a microstructure generator for each new
realization. The concept of Wang tiles decomposes microstructure
generation into an offline phase, which can possibly be computa-
tionally intensive, and a nearly instantaneous online phase. In the

3 Level-set description based on the signed distance to the nth nearest
particle boundary does not fulfil all metric criteria.
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Fig. 1. Illustration of a synthesized sample of a closed-foam microstructure
obtained as a 4 x 2 x 2 tiling assembled from a set of pre-generated Wang
cubes. Individual face codes that encode the geometrical continuity of individual
tiles and play the role of compatibility constraints during a tiling assembly are
shown in semi-transparent colours.

offline phase, information regarding a heterogeneous microstruc-
ture is compressed into a set of smaller domains - Wang tiles
- with predefined compatibility constraints on the compressed
microstructural geometry. In the online phase, microstructural
realizations are assembled from these domains with a fast, linear
algorithm that produces stochastic realizations with suppressed
periodicity. The merits of the tiling concept for RVE size analyses
were demonstrated in [45,59].

Optimization-based approaches developed initially for the
SEPUC design can be extended to incorporate generalized
periodic boundary conditions and used to generate the mor-
phology of tiles [58,60]. However, the extension amplifies the
major weakness of optimization approaches - their computa-
tional cost — making them prohibitively expensive for complex
three-dimensional models. As a remedy, we have proposed a
method motivated by Cohen et al. [57] that combines a sample-
based approach with quantitative spatial statistics [61]. While
this method is by orders of magnitude faster than the optimiza-
tion approach, it has difficulties handling complex, percolated
microstructures such as foam, and produces corrupted ligaments
in sample overlaps [45].

In this paper, we extend Sonon et al’s method to Wang tiles
in order to produce tile-based representations of microstructures
intractable by the former methods [58,60,61], see Fig. 1. To this
end, in Section 2, we review the fundamentals of the Wang tile
concept and discuss, in detail, connectivity and mapping between
vertex- and edge/face-based definitions of Wang tiles. Next, we
outline Sonon et al.’s method [50,52] and describe modifications
necessary to accommodate generalized periodicity, see Section 3.
Finally, equipped with the adapted procedure, we illustrate sam-
ple outputs of the procedure in two and three dimensions. We
also compare three tile sets — two stochastic and a strictly ape-
riodic one - with the same cardinalities in terms of periodicity
artefacts, complementing our previous study [61] that dealt only
with the distribution of tile types.

2. Wang tiles

Wang tiles constitute the building blocks of the abstract con-
cept used in this work. Albeit the shape of the tile domains can
be any parallelogram (or a parallelepiped in 3D), for simplicity’s
sake we assume only square (or cubic) domains in the sequel.
All tiles from the tile set have compatibility codes attributed to

their edges (faces), illustrated using colours in Figs. 1 and 2.
These codes play the role of constraints during an assembly of
tile instances in a tiling—a portion of a plane (space) without
any voids or overlaps; only tiles with the same codes on the
abutting edges (faces) can be placed side by side. In addition,
tiles can be neither rotated nor reflected during the assembly.
Even though the last two requirements can be eliminated by
modifying the definition of compatibility codes [62], we retain
them for practical purposes since they preserve the orientation of
the microstructure compressed within the tile set. The particular
version of an assembly algorithm depends on the type of the tile
set, discussed below.

Originally, the concept of Wang tiles was introduced in first-
order predicate calculus as a visual surrogate to a decision prob-
lem of VAV statements* [63,64]. The initial conjecture that a
whole plane can be covered only if a periodic tiling exists [63]
was disproved shortly after [65], triggering the pursuit of the
smallest tile set allowing for strictly aperiodic tiling of the plane,
see the classical monograph [66] and [67] for historical overviews.
This quest for the smallest set appears to be over; supported
by an extensive computer-aided search, Jeandel and Rao [67]
announced a set of 11 tiles over 4 codes for each edge orientation,
stating that no smaller set exists.

2.1. Stochastic tile sets

Similar to applications in biology [69], physics [70], and com-
puter graphics [57,71], we use the concept only in its geometrical
interpretation as a suitable formalism describing mutual com-
patibility of small domains. Except for the comparison study
in Section 4.1, we also limit ourself to the stochastic tile sets
introduced by Cohen et al. [57]. Besides the fact that deterministic
tilings of the aperiodic sets often exhibit locally ordered patterns,
the stochastic sets offer higher flexibility in terms of design,
i.e. choosing the number of tiles and codes and their distribution
within the set.”

The assembly algorithm for stochastic sets works sequentially:
an initially empty grid is traversed in a scanline [73] way; at
each grid node, possible candidates compatible with previously
placed tiles are identified in the set and one candidate tile is
randomly chosen and placed; see the illustration in Fig. 3. Thus,
the only requirement for the set design is that there is at least
one tile (but optimally two or more to preserve the stochastic
nature of the assembly) for every possible combination of codes
on the upper and left-hand edges. In principle, the random choice
from the subset can be replaced with an informed selection pre-
ferring e.g. different phase volume fractions in different regions
of a domain according to a pre-generated Gaussian random field.
This modification allows for correlations in the microstructure at
length scales larger than the tile size. For the sake of brevity and
without loss of generality, however, we use only the standard
stochastic algorithm in this work.

The tiling concept’s ability to generate naturally looking pat-
terns from a limited amount of samples — which proved highly
appealing in computer graphics [57,71] - stems from the reduced
periodicity in tiling assemblies. This feature complies well with
our ambition to replace a SEPUC-based description of random
heterogeneous materials with its generalization that would al-
low for fast synthesis of stochastic microstructural samples or
microstructure geometries for entire macroscopic domains.

The design of a compressed microstructural representation
consists of two steps. First, the cardinality of the tile set and a

4 A statement containing one existential (3) and two universal (V) quantifiers.

5 The limitations of aperiodic sets are especially critical in 3D, because only
one aperiodic set of Wang cubes has been published to date [72].
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Fig. 2. Formal definition of three Wang sets with the equal cardinality of 16 tiles: (a) an edge-based set with two horizontal and vertical codes, (b) a vertex-based
set over four horizontal and vertical codes, and (c) the aperiodic Ammann’s set [68] over six horizontal and vertical codes. Similar to Fig. 1, the compatibility codes
playing the role of constraints during the tiling assembly are illustrated with colours assigned to individual edges. The corresponding vertex codes are depicted
in light and dark grey corner squares. While in the vertex-based set (b), edge codes were obtained by mapping two vertex codes uniquely to one edge code, the
potentially different vertex codes for sets (a) and (b) were identified using the analysis from Section 2.3 of connectivity graphs shown in Fig. 5.
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Fig. 3. Illustration of a step in the stochastic assembly algorithm [57]. A tiling
of a given size is filled sequentially; for each position in a tiling, a final tile is
chosen from candidate tiles that are filtered out from a given tile set based on
the compatibility constraints posed by the previously placed tiles. The candidate
tiles for the particular position denoted with the question mark are highlighted
in the tile set shown on the right.

particular distribution of edge (face) codes is chosen. This controls
the frequency of tile occurrence in a tiling. Next, tile interiors are
designed such that (i) the generated microstructure is continuous
across the compatible edges and (ii) assembled tilings resemble
the desired microstructure. Note that the latter requirement is
not imposed on individual tiles. On the contrary, variability in the
compressed representation is the main merit of the tiling con-
cept. Tile interiors together with edge compatibility carry local
microstructural characteristics, while the fluctuations over dis-
tances larger than the tile size are facilitated via the tile assembly
algorithm.

2.2. Edge- vs. vertex-based tile definitions

Complementary to the edge-based specification introduced
above, Wang tiles can be defined using vertex codes. Unlike
the standard edge-based definition, the vertex-based definition
allows for direct control of tile states across vertices, prevent-
ing pronounced repetitiveness when a visually distinctive mi-
crostructural feature falls into the vertex region [57]. To avoid
this “corner problem”, Cohen et al. [57] proposed marking the tile
vertices with an additional set of codes, essentially overlaying two
tile set definitions. Subsequently, Lagae and Dutré [73] retained
only vertex codes, reporting superior spectral properties for as-
sembled patterns compared to edge-based sets with the same
cardinality.

Albeit the two definitions yield the same cardinality of tiles
(C%)in the complete set, i.e. the set that contains all combinations
of C codes, they differ when it comes to minimal stochastic
sets, i.e. sets that contain at least two tiles for each admissible
code combination of already placed neighbouring tiles (2C? for
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Fig. 4. Illustration of the generalized periodicity effect on the particle copy
process. The three steps shown illustrate how a particle initially placed at the
top left corner of the first tile (grey particle on the left-hand side of the figure)
is sequentially copied to other loci following the edge codes it intersects. Dashed
particle outlines loci where the particle will be copied in the next step.

edge-based sets vs. 2C3 in the case of vertex-based ones). The
difference is even more pronounced in three dimensions: a full
face-defined set contains C® cubes compared to C® cubes in a
vertex-defined set. Theoretically, Wang cubes can be also defined
with edge codes in three dimensions; however, cardinality ex-
ceeds both the face- and vertex-based definitions without any
known benefits.

Mapping vertex-defined tiles® to the original definition is
straightforward: two vertex codes define one edge code. Hence
all the above-mentioned design and assembly procedures directly
apply to the vertex-based definition as well. In fact, the mapping
provides an effortless way to produce a minimal stochastic edge-
defined set with equal occurrence probability of each tile, the set
characteristics sought for in [60]. On the other hand, because the
mapping is injective only, it is generally not possible to map an
edge-defined set to a vertex-based one.

2.3. Vertex analysis of a tile set

Here, we outline a tile set analysis capable of revealing the
underlying vertex definition, if it exists. The motivation behind
this analysis is the pragmatic question which arises when im-
plementing generalized periodicity: If a particle intersects a tile
boundary, what other tiles should it be copied to? While the
answer is straightforward for a particle intersecting a tile edge,
vertex overlap is more involved. A particle overlapping a vertex
is carried to other tiles by both the horizontal and vertical edges.
Because the particle overlapped a vertex in the original tile, its
images overlap vertices of the other tiles as well. Consequently,
these images are propagated further by the newly affected edge
codes, see Fig. 4. Whether the particle is eventually copied to

6 The same procedure holds also for Wang cubes, where four vertices define
one face code.
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Fig. 5. Comparison of graphs pertinent to the tile sets from Fig. 2, identifying a potential vertex-based definition of the sets. Each graph node corresponds to a code
on a half of a tile edge (either left/right for horizontal codes, or top/bottom for vertical codes), and graph arcs correspond to tile vertices. As there are multiple
vertices - and hence parallel arcs - connecting the same nodes, the graphs should be drawn as a multigraph. However, multiple arcs are collapsed into one for the
sake of brevity; only in (a) multiplicity is indicated by tile indices attached to each arc. Independent sub-graphs indicating the vertex character of the set are shown

in distinct light and dark grey, which correspond to the vertex codes in Fig. 2.

all vertices or appears only in a selected subset depends on the
allocation of codes to individual tiles.

Assume an undirected graph’ where each node represents the
code on a particular half of an edge (either top/bottom for vertical
or left/right for horizontal codes, resulting in two occurrences
of each edge code) and each arc corresponds to a tile vertex.
The graph is by definition bipartite, because each vertex con-
nects horizontal and vertical codes, and represents a multigraph
since there are usually more vertices with the same adjacent
edge codes in the tile set. To answer the aforementioned ques-
tion, we identify connected components of the graph using the
Depth-First Search algorithm [74, Section 18.2]. Each independent
sub-graph then corresponds to a distinct vertex code and the arcs
pertaining to the sub-graph determine the vertices to which a
vertex-overlapping particle will be propagated. See Fig. 5 for a
comparison of three graphs pertinent to the tile sets depicted
in Fig. 2. The subgraphs (if present) are plotted in distinct grey
colours, which correspond to the colours of vertex codes shown
in Fig. 2.

In three dimensions, a set of Wang cubes can be analysed
analogously with only a minor modification: a graph node rep-
resents one corner of a cube face. Thus, each face code appears
four times in the graph. In addition, cube edges with the same
direction vector must be also classified, addressing the situation
when a particle intersects a cube edge. The classification follows
the exact same procedure as vertex identification in two dimen-
sions, neglecting the codes on faces perpendicular to the analysed
edges.

3. Tile design using level-set functions

As mentioned in Section 1.1, Random Sequential Adsorption
(RSA)® is one of the most frequent algorithms for generating
particle packings and microstructural geometries. It follows the
simple idea of throwing particles of an arbitrary shape into a
given domain and keeping those that do not overlap with previ-
ously placed ones. In its original setting, however, the algorithm
poses a critical drawback for higher volume fractions: the suc-
cess rate for accepting the particle position rapidly decays in
later stages because the majority of the randomly selected po-
sitions collide with the already placed particles. Optimally, the

7 Instead of the standard vertex-edge nomenclature for a graph, we use node
and arc terms in order to avoid confusion with similar geometrical notions
related to Wang tiles.

8 Sometimes, the term Random Sequential Addition, e.g. [75], is used
interchangeably.

remedy would be to sample the new particle position directly
from a domain that is certified to result in a non-overlapping
composition.

Several such remedies have been listed in Section 1.1. Here,
we recall the approach of Sonon et al. because we have extended
their methodology to Wang tiles. Sonon et al. [50-53] adopted
the implicit, level-set-based description of a microstructural ge-
ometry and demonstrated that it enables - in addition to the
desired sampling from a valid domain loci - generating complex
microstructural geometries (such as open and closed foams) in
a unified framework, using suitable morphing operations. More-
over, both features are independent: if a particle packing is the
desired output, the morphing operations can be neglected. On
the other hand, any distribution of points or particles obtained
by different packing methods can serve as the input for the
morphing operations.

In the the remainder of Section 3, we revise individual steps
from the Sonon et al.’s framework and introduce necessary mod-
ifications facilitating the compatibility constraints arising in the
concept of Wang tiles. For the sake of clarity, all procedures
are presented in the two-dimensional setting with comments
about three-dimensional problems when necessary. Section 4
then presents both two- and three-dimensional results.

3.1. Generating particle packings

The original Sonon et al.’s approach [50] rests on describing
the geometry of particle P with a level-set function £, which
gives the signed distance of point x from the nearest particle
boundary I'” (with negative values inside the particle), such
that

£P(x) = min d(x,y), (1)
yer”?
with the signed distance function d(x, y) given by
—lx =yl ifxeP,
dx,y)= . 2
*.y) { lx—yl  otherwise. (2)

Consequently, the zero iso-line of £” represents the particle
boundary I'’”, as depicted in Fig. 6. Note that unlike many ap-
plications of the level-set method where the implicit geometry
description evolves in time according to the Hamilton-Jacobi
equation, see [76, and references therein], £7 is computed for
the given geometry of a particle and remains fixed.

Assume for now that we have domain §2 that contains set R of
already placed particles and their geometry is encoded in a single
level-set field £,

£2(x) = glei%cp(x), VX e 2; (3)
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Fig. 6. Implicit representation of particle geometry with the level-set function
£¥. The boundary of particle 7 is obtained as a zero-value contour of 2%
(plotted in a black line). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Two consecutive steps of the level-set based RSA algorithm for a Periodic
Unit Cell: (a) level-set field £ with previously placed particles (values of £
outside the admissible sampling domain .A are displayed as translucent) at the
nth step; (b) updated state of £ and A after placing a new particle at step
n+1.

)]

see Fig. 7 for an illustration. Knowing the radius r of the smallest
circumscribed circle as the only characterization of the new par-
ticle, overlaps with the existing particles can be readily prevented
by sampling its centre from the domain

A={xe|cx)>r}. (4)

After placing the new particle P, the level-set field £ is updated
with £7,

£°(x) = min (°(x), £7(x)), Vxe 2. (5)

This procedure repeats until either a pre-defined stopping crite-
rion (e.g. a desired volume fraction) is met or A = ¢.

To increase the volume fraction that can be achieved with
this procedure, two additional restrictions can be posed on the
admissible subdomain A. First, a maximal distance p from exist-
ing particle boundaries can be added to Eq. (4), preventing too
large gaps between particles. (If requested, a minimal distance «
between two particles can be further enforced as well.) Second,
to prevent locally jammed states with large interparticle gaps, an
additional field EI‘IZ storing the shortest distance to the surface of
the second nearest particle can be included in Eq. (4) and limited
from above with o, see [50] for additional details. With all these
constraints in action, Eq. (4) takes the form

A={xeQ|r+k <c°X)<r+p, Lf <r+0}. (6)

1,24,5,8,9,10,13 1,4,5.8 1,3,4,5,7,8,11,12
3,6,11,14 6 2,6,10,15

|

]
4,8,10,12,13,15,16 8,12,13,16 5,8,9,11,12,13,14,16

Fig. 8. Neighbourhood grid identified for each tile in a tile set (here shown for
tile V6 from Fig. 2b) containing codes of tiles that can occur at given positions.
Light and dark grey regions depict individual entities in the bookkeeping
structure, which prevents calculations. (During the update procedure described
in the text, the blue particle can be accounted for either in tile 6 at the centre,
or from tiles 3, 6, 11, or 14 at the first column, second-row position. With
the bookkeeping structure considered, only one update is performed.) The blue
square illustrates the use of acceleration via a precomputed patch; values of £7
are computed only once and used for all particle occurrences during an update.
If requested, values outside the patch are computed in a regular way.

Enforcing periodicity of the packing is also straightforward:
upon placement of a new particle, the domain level-set field is
also updated with the particle’s periodic images (eight in 2D;
recall the grid in Fig. 8, and 26 in 3D).

3.1.1. Extension to Wang tiles

Compared to generating PUCs, the additional compatibility
constraints among individual Wang tiles necessitate several mod-
ifications in the original Sonot et al.’s algorithm to generate
continuous microstructural morphology of a tile set. For the Pois-
son discs distribution, Lagae and Dutré [77] modified the Dart
Throwing algorithm by partitioning tile domains into separate
regions pertinent to vertices, edges, faces, and tile interiors, and
filling the regions sequentially, starting with the vertex regions.
Here we present a different approach better suited to packing
particles of different sizes and shapes that processes all tiles
simultaneously and does not require a priori partitioning of tile
domains.

As £2 we use a level-set field £5 = |J,.s£7 defined on
a regular grid for each tile 7 in the tile set S. For each tile in a
pre-processing stage, we identify potential neighbouring tiles and
store their indices in a grid (3 x 3 or 3 x 3 x 3 in two or three
dimensions, respectively), see Fig. 8, which will be used later in
the updating phase.

For further description, we define a copy-inducer as a geo-
metrical entity that is responsible for inducing particle copies to
other tiles. Hence, a copy-inducer can be either a vertex, edge,
face, or formally the tile itself and is related to a code identified
in Section 2.3. The particular type of the copy-inducer stems from
particle’s intersections with a tile boundary (if a particle does not
intersect a boundary, the tile is the copy-inducer, indicating that
no copy is necessary. If a particles intersects one edge, the edge
is the copy-inducer, and so on).

Modification 1: Update. The main structure of the modified algo-
rithm follows the original one. After sampling a particle location
from A C S, which yields tile 7; and centre xf € T; where the
new particle will be placed, the particle’s intersections with the
boundary of 7; are determined, and - based on the intersections



M. Doskdr, J. Zeman, D. Rypl et al. / Computer-Aided Design 123 (2020) 102827 7

- a copy-inducer is identified. Images of the particle are subse-
quently copied to the relevant tiles following the matching codes
on the corresponding copy-inducers. A level-set field of the whole
set is then updated tile-wise as described below.

For each tile, we sequentially loop over all tile positions in the
neighbours grid shown in Fig. 8 (including the centre position
as well) and check each of the potential tiles at that position
for a new particles added in the current step. If any, the central
tile’s level-set field is updated according to Eq. (5). Clearly, a new
particle can appear several times in the same place. To avoid
duplicated calculations, we set up a bookkeeping structure that
records which copy-inducer in the neighbouring grid was already
used during the update and run only the unperformed updates,
see Fig. 8.

Two implementation approaches are possible at this stage:
(i) £¥ is computed anew for each tile and position in the book-
keeping structure, or (ii) provided that £ is represented with
discrete values on a regular grid, £¥ is precomputed for an
auxiliary domain/patch aligned with the particle centre before
any update and this field is then reused for all particle instances.
Moreover, we combine both approaches with the pre-screening
acceleration proposed in [50] that resorts to computing poten-
tially demanding surface-distance functions only when the £
value of a circumscribed circle/sphere - which is fast and easy
to calculate - is less than the actual £% value for a given x.

While the pre-screening acceleration is significant in all cases,
the benefits of a precomputed patch depend mainly on the patch
size relative to the particle circumscribed radius, the £° field
resolution, and the cardinality of the tile set. Especially in the later
stages of the algorithm, when only relatively small parts of £° are
updated, pre-computing a patch for a particle that is not copied to
other tiles might cause unnecessary overhead. Therefore, we use
the patch approach only for particles with either vertex, edge, or
face copy-inducers.

For the three-dimensional set of 16 cubes used in Section 4.3
with ellipsoidal particles of circumscribed radius r = 0.15, the
patch pre-calculation delivered 10% saving in computational time
on average. Note also that the multi-query problem of finding
the shortest distance to a particle boundary from a set of points
is trivially parallelizable, changing the trade-off between patch
pre-computations and direct calculations with available threads.

When all tiles are updated, the algorithm proceeds with iden-
tifying A for the next particle.

Modification 2: Artificial level-set field. Definition of the admis-
sible domain A must also be modified for Wang tiles; particle
centres cannot be sampled directly from .4 obtained from £°.
The reason for this is that the near-boundary parts of each tile
must be informed about the interiors of related tiles in order to
prevent insertions similar to the one depicted in Fig. 9a, where
a copied instance of a newly placed particle collides with in-
terior particle(s) of other tiles. The problem arises only when
a particle image is added to a copy-inducing entity with the
same orientation as the actual inducer (left-hand side edges in
Fig. 9a); particles copied to the opposite copy-inducers automati-
cally meet the non-overlap requirement thanks to the first update
modification described above.

To avoid this problem, we replace £° in Eq. (4) or Eq. (6)° with
a modified field £° which is equal to £5 except for boundary
regions, whose width is dictated by the radius r of the cir-
cle/sphere circumscribed to the current particle. Each boundary
region is then constructed as a point-wise minimum over all re-
gions related to the same copy-inducers with the same code and

9 Recall that the tile set domain £S5 substitutes a generic £% in both
equations from Section 3.1.1 onwards.
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Fig. 9. (a) lllustrations of particle intersections that can happen due to copying
particle images without considering artificially updated level-set field Z° in
the definition of .A. The problematic overlaps occur only at inducer places
(highlighted in blue) with the same orientation as the particle copy-inducer
(dashed outlined grey particle on the left-hand side). Figures (b) and (c) depict
the original £° and its modified version Z° that communicates necessary data
across boundary regions to prevent intersections from (a). (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

the same orientation; see Fig. 9c. This construction propagates
the close-boundary state across relevant tiles and thus prevents
overlapping insertions similar to the one depicted in Fig. 9a. Note
that a similar modification is not required for £;? because all in-
formation necessary to prevent the collisions is already contained
in LS.

Modification 3: Breaking regular grid. The level-set field £ is typ-
ically implemented on a regular grid and the particle centres x”
thus end up aligned with the grid. To break this artificial ordering,
after sampling a new particle centre, we check whether the
surrounding points belong to A. The belonging points then define
quadrants/octants in which the particle can be moved freely. We
generate a random shift within these quadrants/octants and up-
date the particle centre accordingly. However, this modification
is possible only if the grid spacing is sufficiently small compared
to the particle size; otherwise, the implicitly assumed linear
approximation of £° is inaccurate and might result in particle
intersections at intermediate locations.

The modifications described above are sufficient for extending
the original Sonon et al.’s level-set-based packing algorithm to the
concept of Wang tiles. Note that all control variables, e.g. par-
ticle radius r or minimal and maximal distances p and o, can
change while the algorithm operates. For instance, to achieve
denser packings for multi-modal particle size distributions, it is
preferential to start placing large particles first and sequentially
proceed to the smaller ones.

Nonetheless, our extension inherits the weakness of the orig-
inal algorithm when it comes to particles whose shapes are
significantly different than their circumscribed circle/sphere, e.g.
prolonged ellipsoids. In particular, the more the particle volume
deviates from the volume of the circumscribed sphere, the less
dense the final packing can be. While the geometry of the already
placed particles is described exactly with £5 (up to inaccuracies
due to grid spacing in x), the newly placed particle is represented
only approximately during selection of a centre, yielding a pes-
simistic estimate of mutual intersections. The potential remedy
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is to translate the particle centre right after sampling accord-
ing to some heuristic rule aimed at producing denser packings;
however, we leave this issue unaddressed in this paper.

3.2. Morphing operations

The acceleration of RSA by adopting the level-set approach is
attractive on its own; however, the main appeal of the Sonon
et al’s level-set framework is the elegance with which com-
plex microstructures can be generated. As the simplest example,
adding a constant y to £° enables (i) fine-tuning of particle
volume fractions, (ii) smoothing of sharp corners of polyhedral
particles, and (iii) particle coating, e.g. for defining the Interfacial
Transition Zone.

Combinations of £5 and £{ permit rendering interparticle
bridges and controlled Voronoi-like tessellations; see [50], where
these morphing operations were used to mimic microstructural
geometry of clay/sand mixed soils and irregular masonry. Con-
sidering also the shortest distance to the boundary of the third
nearest particle L;fl, Sonon et al. [52] demonstrated that their
framework can produce highly adjustable models of foam-like
microstructures, including features such as a smooth transition
from open to closed foams, concavity of foam ligaments, their
coatings and hollow interiors, and variable thickness of foam
ligaments and cell walls.

As in Section 3.1, we present only the essentials of generating
foam-like microstructures and introduce necessary modifications.
The reader is referred to [50, Section 4] and [52, Sections 3 and
4] for details regarding the above-mentioned local adjustments,
since they remain unchanged.

Assume we have at our disposal all three fields £°, £, and
£§;, containing the shortest distance to the boundary of three
nearest particles (either computed a posteriori for a given particle
assembly or already tracked during the packing algorithm).

In a manner similar to classical Voronoi tessellation, where a
domain is partitioned by boundaries that have the same distance
to the two closest seeds, thresholding the modified difference

Fo=(cf — £%) + ¢ (7)

yields a closed-cell, foam-like geometry with t. indirectly con-
trolling the thickness of foam cell walls. In the same spirit, the
centrelines of the open-foam ligaments can be viewed as loci with
the same distances to the boundary of three nearest particles;
hence thresholding

Fo= (3 + £7) = £5) + 1o, (8)

produces open-foam ligamentswith t, governing their thickness.
Finally, combining Egs. (7) and (8)

F(x) = min (Fc(x), Fo(x)), VxeS, 9)

allows for more realistic geometries with material concentration
at wall intersections, see Fig. 10.

It is critical when extending the original framework to Wang
tiles, with respect to the morphing procedures, to ensure that all
three fields are continuous across the relevant tile edges/faces. As
illustrated in Fig. 11, copying particle images introduced in the
previous subsection is insufficient in this regard. To guarantee
the required continuity, we define a wider domain margin as a
subdomain related to individual copy-inducers. Instead of com-
puting intersections with a tile boundary, we compute them for a
virtual inset boundary (inset by r is usually enough) and copy the
particles according to the virtual copy-inducers. Consequently,
wider portions of tile domains are restrained near boundaries,
resulting in restored continuity. This modification is also reflected
in the construction of auxiliary field £5.

(a) (b)

Fig. 10. Influence of morphing operations on resulting (a) two- and (b) three-
dimensional geometry. From the original particle distribution (depicted with
light grey), the closed-cell, foam-like geometry (shown in blue) is obtained
by Eq. (7) and the open-like features (plotted in red) follow from Eq. (8). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 11. Assembled level-set fields composed of 2 x 2 tiles without (top row)
and with (bottom row) a virtual boundary inset taken into account during
particle placement. Note that even the nearest-neighbour distance £ (a) is
not continuous across vertices when the virtual inset is not considered, albeit
the particle boundaries, i.e. zero-value contours outlined in grey, are. Severe
discontinuities then appear for the second-nearest £y (b) and the third-nearest
Ly (c) neighbour distance without the inset boundaries. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

4. Results
4.1. Comparison of 16-tile sets

First, we compare the periodicity reduction in three planar
sets depicted in Fig. 2, which have the same cardinality but
different tile definitions. We supplement our earlier observa-
tions [61] regarding suppressed artificial periodicity compared
to PUC-based reconstructions and better fitness of stochastic
tile sets over their aperiodic counterparts. Namely, we consider:
(C16) an edge-based stochastic set over four colours,'® (V16)
a vertex-based stochastic set over eight colours, and (A16) the
aperiodic Ammann’s set [68] over 12 colours.!!

Assuming ergodicity of a microstructure, we quantify the ar-
tificial periodicity in the tiling assemblies by means of the sec-
ondary peaks in the two-point probability function S,(x) [4].

10 This set corresponds to the set reported in [57].

11 For the aperiodic assembly, we used the substitution rule from [78].
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Fig. 12. S, cross-sections along an x; coordinate for 10 x 10 tilings for (a) the edge-defined tile set C16, (b) the vertex-defined set V16, and (c) the Amman set A16,
considered in Section 2.3. Thin grey lines depict the average over 100 realizations of each tile set morphology, solid blue line shows the overall average (i.e. over
realizations and morphologies) and the green area captures the range between minimal and maximal values. Dashed grey line marks the asymptotic value ¢2, where
the average volume fraction ¢ is considered. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

S,(x) states the chance of finding two points separated by x in
the same phase. Hence, S;(x) attains its maximum at x = 0,
where it equals the volume fraction ¢ of a chosen phase. For
microstructures without any internal ordering, S,(x) — ¢ with
%] — oo because two sufficiently distant points are uncor-
related. On the other hand, if a microstructure is composed of
a repeating (SE)PUC, S,(x) exhibits secondary peaks having the
same magnitude as S,(0) at nodes of a regular grid whose spacing
corresponds to the (SE)PUC size. Thus, in the intermediate case
of Wang tiling, the magnitude of secondary peaks indicates the
remaining artificial ordering in the reconstructed microstructure,
see [58,61] for details. For computing S,(x), we used the Fast
Fourier Transform (FFT) instead of random sampling, because the
bias in the statistics caused by the implicit periodicity introduced
with FFT is negligible for reasonably large microstructural realiza-
tions [79]. Recall also that the two-point probability function S,
widely used for statistical quantification of material microstruc-
tures, e.g. [4], is the inverse Fourier Transform image of the power
spectral density (or its estimate via periodogram) traditionally
used in the Computer Graphics community, e.g., [57,71,77].

For each of the three tile sets we ran the presented algorithm
25 times and thus generated 25 different tile set morphologies.
Aiming at capturing the artificial periodicity related to the limited
number of edge codes and tiles, we resorted to the simplest set-
up with circular inclusion of a fixed radius r = 0.1 in order
to minimize the influence of particle shapes. In addition, we
prevented the particles from overlapping tile vertices in order not
to favour the vertex-based tile set a priori.’? The level-set fields
of each unit-size tile (2 = [—0.5, 0.5]?) were discretized using a
regular grid comprising 201 x 201 points. Finally, we posed two
constraints, k = 0.01 and p = 0.03, on A, recall Eq. (6).

We assembled 100 microstructural realizations, i.e. tilings,
containing 10 x 10 tiles for each tile set and tile morphology
and computed S, statistics for the inclusion phase. Cross-sections
of S, along the x; coordinate are plotted in Fig. 12 for the tile
sets considered. As expected, the secondary peaks appear at loci
with integer coordinates. Excluding the primary peak, we picked
the second highest extreme S, normalized against the averaged
asymptotic value ¢ for each realization and plotted the obtained
data with box-and-whisker diagrams in Fig. 13.

While the Ammann’s tile set A16 seems promising locally -
note the suppressed secondary peaks at x; = 1.0 and x; =
4.0 in Fig. 12¢ - its deterministic aperiodic structure leads to
pronounced secondary extremes in other regions, e.g. x; = 3.0.
This observation corroborates our previous conclusions, based
solely on the distribution of individual tiles within tilings, that

12 From Fig. 5 it follows that a particle will be copied to all tiles if it overlaps
any vertex for the A16 and C16 tile sets.

1'4_i I T
=T
v T =

V16 C16 A16 V81 C81

Fig. 13. Box-and-whisker plot of the normalized maximal secondary peaks S,
over 100 realizations and 25 tile set morphologies for each tile set. The central
lines mark the median; edges of each box denote the first and third quartiles;
and whisker lines contain all data not considered as outliers (marked as dark
blue dots).

strictly aperodic sets such as the Ammann’s or Culik’s set con-
sidered in [61] lead to higher secondary peaks than stochastic
sets [57] with the same cardinality, which feature more uni-
form secondary peaks. Figs. 12 and 13 clearly show that, out
of the two stochastic sets, the vertex-based definition performs
better as expected, even despite the prevented vertex overlaps.
This superiority of vertex-based tile sets in two dimensions is
further supported by additional results comparing vertex- and
edge-based sets comprising 81 tiles, see Fig. 13.

4.2. 2D example

Second, we present an example of a two-dimensional mi-
crostructure based on polygonal particles. The geometry of each
particle was derived from an originally regular, randomly-
oriented polygon with the number of vertices being sampled from
a normal distribution with the mean value 0.6 and the standard
deviation 0.5, (6.0, 0.5%), and rounded to the nearest integer.
The angle between two rays connecting the particle centre and
neighbouring vertices was perturbed with a value randomly cho-
sen from J\/’(0.0,0.Sz). Finally, each vertex was placed on its
corresponding ray at a distance sampled from A (0.95, 0.05?)
(and capped by 1.0) relative to the particle’s circumscribed radius.

Following the outcomes of Section 4.1, we picked the vertex-
based set with 16 tiles depicted in Fig. 2b. Similarly to the pre-
vious set-up, the size of each tile was 2 = [—0.5,0.5]> and
the corresponding level-set fields were discretized using a reg-
ular grid comprising 201 x 201 points. The initial value of the
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Fig. 14. Results of the algorithm set-up described in Section 4.2: (a) A composed view of the tile set with highlighted edge and vertex codes. The particulate assembly
is drawn in grey; the corresponding foam-like microstructure is shown in blue (similar to Fig. 10); (b) An example of a 10 x 5 tiling. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

circumscribed radius was set to r = 0.08. After 40 algorithm
steps, the radius was increased to 0.1, and eventually we reduced
it to 0.06 after next 60 steps. The number of algorithm steps and
related radii were chosen randomly to illustrate the algorithm’s
control options. Only the first two constraints on A from Eq. (6)
were posed. We fixed the minimal particle distance at « = 0.01;
the maximal distance p was set to 0.05 in the first 50 steps and
decreased to 0.02 later. The width of the virtual boundary inset
was kept constant at 0.1.

Fig. 14 depicts a composed view of the resulting particle
assembly and the related closed-cell, foam-like microstructural
geometry obtained by considering t. = 0.015 and t, = 0.020
in Eq. (9).

4.3. 3D example

Finally, we demonstrate a three-dimensional output of the
algorithm for a set of 16 Wang cubes with two codes for each
face orientation uniformly distributed in the set.

Again, we used centred tile domains of a unit size discretized
with a grid of 101 x 101 x 101 points. For the packing part of
the algorithm, we considered ellipsoidal particles with a random
orientation and a fixed circumscribed radius r = 0.10. The
ratio between the middle and the major semi-axes lengths was
sampled from a uniform distribution ¢/ (0.7, 0.9); the minor to
the major semi-axes length ratio was randomly generated from
U (0.6, 0.7). The admissible domain at each algorithm step was
dictated both by £° and ﬁff with constraints x = 0.02, p = 0.05,
and o = 0.05 in Eq. (6). Since we aimed at modelling a foam-like
microstructure, the width of a virtual inset boundaries was set
to 0.1.

The final microstructure was obtained by performing the mor-
phing operations according to Eq. (9) with t. = 0.02 and t, =
0.03. For the sake of brevity, we do not show individual Wang
cubes, and we plot only a microstructural sample comprising
5 x 5 x 3 tiles in Fig. 15.

4.4. Computational cost

Our extension inherits the O(N) complexity of the Sonon
et al.’s method [50,52], as shown in Fig. 16. However, the actual
time needed to generate particle packings or complex morpholo-
gies depends on several factors. While the impact of the grid
resolution is straightforward (computational time scales linearly
with the number of grid points), the effect of other factors such

Fig. 15. A microstructural realization assembled as a 5 x 5 x 3 tiling from the
Wang tiles generated in Section 4.3.

as particle shape and compatibility constraints due to different
definitions of a tile set is less obvious.

To illustrate the influence of these factors, wall-clock time for
several settings is plotted in Fig. 16. Tile sets considered for the
analysis are the two-dimensional ones used in Section 4.1 and
the three-dimensional sets from Section 4.3; in addition, a PUC
was included in the comparison as a trivial case of a tile set.
For all settings, tile domains of unit size were discretized with
401 x 401 grid points in two and 101 x 101 x 101 grid points
in three dimensions. The circumscribed radius of particles was
set to r = 0.02 for two-dimensional and r = 0.05 for three-
dimensional problems. The algorithm was terminated once the
desired number of placed particles was achieved. Computational
time!? for each setting was measured 10 times.

Interestingly, albeit of the same cardinality, individual tile
sets from Section 4.1 exhibit significantly different computational
times. This is due to the distribution of edge codes within a set,

13 Al computational times are reported for a workstation equipped with an

Intel® Xeon® E31280 3.50 GHz processor and 16 GB RAM running Windows
10 version 1903. The algorithm was implemented in the latest standard of
C++ language (C++17), relying on parallel algorithms from the C++'s Standard
Template Library.
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Fig. 16. Wall-clock time needed to pack N particles into (a) two-dimensional
and (b) three-dimensional tile sets. Results for different particle shapes are
drawn in distinct line styles; considered tile sets (including the trivial case
of PUC) are distinguished with distinct colours. Error bars show the standard
deviation for each setting. PUC results in two dimensions are limited by the
number of particles that can be packed in a unit domain.

because a larger part of the tile set domain must be updated with
each particle copy in sets with fewer codes, recall Section 3.1.1.
Note that Ammann’s set with six codes for both horizontal and
vertical edges behaves nearly the same as PUC.

Computational time related to the morphing operations de-
pends on the operational mode of the algorithm. If the algo-
rithm is used for both packing and morphing at the same time,
the level-set fields used during the particle packing phase can
be directly utilized for the morphing operations. On the other
hand, when the morphing part runs separately, all the distance
fields must be calculated again. Yet this recalculation is typi-
cally faster than the packing because all copies and compatibility
constraints are already taken into account; for instance, gener-
ating the particle packing for the microstructure presented in
Section 4.3 took 1280 s while the recalculation needed for the
morphing operations finished in 420 s.

5. Summary

In this work, we have extended Sonon et al.’s level-set based
framework [50] to microstructural models based on the formal-
ism of Wang tiles. The extension enables generating compressed
representations of complex microstructural geometries such as
open and closed foams or cells, which have been nearly impos-
sible [61] or very expensive [58] to generate for Wang tiles to
date.

Advancing from the standard Periodic Unit Cell to the general-
ized periodicity of Wang tiles necessitated several modifications
of the original algorithm that addressed difficulties originally not
encountered in the case of PUC. Driven by the geometrically-
motivated question of where a vertex-overlapping particle should
be copied to, we have come up with a simple procedure based
on graph analysis capable of revealing the underlying vertex
definition of a tile set, if present. We have also demonstrated
that a straightforward copying of boundary-intersecting particles
according to the edge and vertex codes is insufficient for pre-
venting spurious particle overlaps because the information about
the interior of a tile is not automatically communicated across
individual tiles. As a remedy, we have introduced an artificially
updated level-set field that facilitates this necessary communica-
tion. The width of the updated region in this field is dictated by
the required final geometry. If only a particle distribution is to be
generated, the width equal to the particle radius r suffices. On the
other hand, if foam-like microstructures are desired, the virtual
boundary inset by r is necessary in order to preserve continuity
of the level-set fields £ and £§ across tile edges, resulting in the
updated region of width 2r.

Additionally, we have devised two minor modifications, one
capable of breaking a regular underlying grid of possible particle
centres by introducing their random shifts within an admissible
region, the other accelerating the £5 updates by pre-computing
L7 on a patch. The importance of the latter modification grows
with higher £° resolutions and larger cardinality of a tile set.

Having a universal framework for generating Wang tile mor-
phologies at our disposal, we have supplemented our previous
comparison of strictly aperiodic and stochastic tile sets [61] and
confirmed the superiority of vertex-defined tile sets in suppress-
ing artificial periodicity in assembled microstructural samples.
Given the same cardinality of the edge- and vertex-based tile sets
in two dimensions, we recommend using the latter. On the other
hand, the same comparison in three dimensions is more subtle
and the choice should be always a compromise between avail-
able computational resources and required periodicity reduction,
following e.g. the approximate formula proposed in [58].

Admittedly, the presented modification inherits certain lim-
itations posed by the original framework; namely, it provides
only indirect control of a resulting microstructural geometry and
no spatial statistics are involved in the particle placing process.
Albeit addressing these limitations remained out of the scope
of this work, ideas conceptually similar to [10], i.e. optimizing
the particle positions a posteriori to minimize the discrepancy
between target and computed spatial statistics, could be poten-
tially applied to steer the generated microstructure to the desired
statistics.

Albeit our extension features linear complexity as in the orig-
inal Sonon et al.’s framework, the generalized periodicity brings
increased computational cost compared to PUC generation, see
Section 4.4. Recall though that tile-based compression is intended
primarily for generating numerous stochastic realizations with
arbitrary sizes. Thus, more time can be spent on preparing the ini-
tial microstructure because the increased cost will be amortized
later during repeated use of the same compression.

Our current focus is on developing a robust finite element
discretization tool that would enable meshing both outputs of the
framework, i.e. analytical geometries of particulate microstruc-
tures and complex geometries implicitly defined via level-set
fields and processed with the marching-cube algorithm. In both
cases, special attention will be paid to ensuring topological and
geometrical compatibility of the resulting finite-element meshes
across the corresponding faces/edges.
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