

Vypracoval: M. Doškář

Poslední editace: 09/2020

Výzkumná zpráva: Doporučení na programovací styl

Copyright © 2016–2020 CUBESPACE, s.r.o. & ČVUT i

Obsah
Stručná charakteristika úkolu .. 1

Doporučení .. 1

Výzkumná zpráva: Doporučení na programovací styl

Copyright © 2016–2020 CUBESPACE, s.r.o. & ČVUT 1

Stručná charakteristika úkolu
Pro usnadnění orientace ve zdrojovém kódu a pro jeho snadnější aktualizaci a rozšíření byla

vypracována doporučení týkající se programovacího stylu. Nejedná se o pevně závazná pravidla,

nicméně jejich dodržování je důrazně doporučováno, pakliže neexistuje relevantní důvod pro jejich

porušení. Tato doporučení se týkají pouze zdrojových kódů psaných v jazyce C++ a následují vhodné

praktiky doporučované velkými softwarovými firmami i předními členy komise zajišťujícími další rozvoj

programovacího jazyka C++.

Doporučení následují C++ Core Guidelines od autora jazyka C++ Bjarne Stroustrupa dostupná na

https://github.com/isocpp/CppCoreGuidelines a přebírají některé prvky z Google C++ Style Guide

(https://google.github.io/styleguide/cppguide.html). Podobné myšlenky lze dále najít i u jiných

programovacích jazyků, např. v doporučení Zen of Python.

Doporučení
• Kód by měl být psán v posledním standardu programovacího jazyka C++, v době psaní tedy

C++17, a v maximální možné míře využívat všech jeho vlastností (např. std::filesystem,

std::optional, auto deduction, for-range loops). Napsaný kód by měl být plně přenositelný

napříč platformami.

• Zdrojový kód musí být psán v anglickém jazyce (jména proměnných, funkcí a metod,

komentáře)

• Komentáře by měly být stručné a výstižné. Optimálně by záměr programátora měl být

dokumentován výstižnými názvy proměnných, funkcí a metod a použitými algoritmy ze

standardní knihovny.

• Název proměnných by měl být ve formátu camelCase, tj. s malým počátečním písmenem.

Názvy tříd by měly být ve formě varianty CamelCase formátu s velkým počátečním písmenem,

tzv. PascalCase.

• Názvy metod a funkcí by měly být výstižné a dostatečně popisné. V případě víceslovných názvů

by měla být jednotlivá slova oddělená podtržítkem.

• Pořadí jednotlivých částí kódu by se mělo řídit doporučením Google C++ Style Guide.

o V hlavičkovém souboru by první měly být importovány standardní knihovny,

následované importem externích knihoven, a nakonec knihovnami vyvinutými pro

danou aplikaci. V jednotlivých částech by měly být knihovny řazeny abecedně.

o V definici třídy by měly být uvedeny prvně veřejné metody a data, následované

chráněnými a soukromými metodami a daty. V rámci každé části s definovaným

přístupem by měly první být definice, následované daty, a nakonec by měly být

uvedeny metody.

• Funkce a metody by měly mít pouze vstupní parametry (případně vstupně-výstupní). V případě

více výstupů funkce či metody je doporučeno využívat objekty třídy std::pair či std::tuple.

• Data do funkcí a metod by měla být v základu předávána pomocí referencí. V případě

jednoduchých datových typů je možno předávat hodnotou.

• Primárně by měly být všechny vstupní parametry a proměnné definovány jako konstantní.

Nepřítomnost konstantního kvalifikátoru indikuje, že bude daná proměnná dále v kódu

měněna.

• Skutečné konstanty, jejichž hodnota je známá již při kompilaci, by měly být kvalifikovány jako

constexpr.

• Seznam dostupných variant/nastavení by měl být implementován s využitím třídy enum.

https://github.com/isocpp/CppCoreGuidelines
https://google.github.io/styleguide/cppguide.html
https://www.python.org/dev/peps/pep-0020/

Výzkumná zpráva: Doporučení na programovací styl

Copyright © 2016–2020 CUBESPACE, s.r.o. & ČVUT 2

• Při deklaraci proměnných by měla být primárně využívána automatická dedukce, jelikož

zvyšuje nejen přehlednost kódu, ale především zajišťuje správnou volbu datového typu. Delší

odůvodnění je možné nalézt v přednášce Herba Suttera z CppCon2017.

• Proměnné by měly být deklarovány co nejblíže jejich použití.

• Pro inicializaci proměnných by měla být použita syntaxe se složenými závorkami (aby se odlišila

inicializace od jiných příkazů).

• Pro cyklus přes datové kontejnery by měly být primárně využívány algoritmy ze standardní

knihovny (případně for-range cykly) namísto základního for cyklu. Algoritmy lépe dokumentují

záměr programátora a umožňují snadné využití jejich paralelních verzí.

• Pro správu dynamicky alokované paměti musí být použity tzv. chytré ukazatele ze standardní

knihovny std::memory. Běžné ukazatele na datové proměnné nesmí být používány pro správu

dynamicky alokované paměti.

https://www.youtube.com/watch?v=xnqTKD8uD64&feature=youtu.be

